Dust Explosion Simulations in a Filter Using DESC

Jianye Shi¹, Li Xinguang², Zhao Ping³, Siegfried Radandt¹
1. Berufsgenossenschaften Nahrungmittel und Gaststaetten / Forschungsgesellschaft fuer angewandte Systemsicherheit und Arbeitsmedizin, Dynamostr. 7-11, 68165 Mannheim, Germany
 Tel. 0049 621 44563467, jianye.shi@bgn.de
2. School of Information Science and Engineering, Northeastern University
 No.11, Lane 3, Wenhua Road, Heping District, Shenyang, 110004 China
3. Waterborne Transportation Institute of Ministry of Communications
 No. 8 Xi Tu-cheng Road, Beijing, 100088 China

Abstract: Dust explosion is dangerous hazard. There are basically two ways to study dust explosions and their dangers. One is to use different devices in laboratories and real equipment from industry in large scale test sites to carry out small and large dust explosion tests. Another one is to use computational fluid dynamics (CFD) methods to simulate dust explosions. Both have advantages and short comings. CFD can be useful for theoretical studies which in some cases could not be carried out under real industrial conditions. In this paper a CFD program, Dust Explosion Simulation Code (DESC), is used to simulate dust explosion and flame propagation in a bag filter. Some simulation results are presented.

Keywords: Filter, Dust explosion, Simulation, DESC, CFD

Introduction

Dust explosion is a kind of very dangerous hazard and can happen anywhere, where dust is produced either as main products, or intermediate products, or by-products. In order to prevent dust explosion from happening it is necessary to study dust combustion behaviours and its potential dangers. There are two ways to do the work. One is to do practical dust explosion tests in laboratories and in large scale, near-industrial process test sites. Another one is to theoretically use CFD methods to simulate dust combustion process and dust explosion behaviour. The former one has a lot of advantages to obtain real test results under real conditions. It has, however, also many limitations. For example, tests can not be carried out unlimitedly which depend on different parameters, such as personal, test materials, time, cost, and sometimes in large scale test site even on the weather. In one word practical condition itself is the limitation. The later one has advantages to get computational results by changing initial and boundary conditions, geometries, and other parameters systematically. Detectors can be positioned anywhere to monitor dust explosion pressure, pressure rise, oxygen consuming, concentration of CO and CO₂, turbulence and any other concentrated parameters. CFD methods can model an explosion happened before to back trace the development of the explosion, to analyse the possible causes and further more to prevent the similar explosions from happening again. It is useful for risk management. The disadvantage is also obvious -its reliability. Real conditions can not be one hundred percent simulated by using CFD methods and they have their limitations too. The modelling results, no matter how they are closed to real test results, should be thought as an assessing tool to figure out and to predict what could happen under real conditions.

Some researchers did numerical modelling of dust explosion using different CFD methods. Bielet et al did numerical simulation in pneumatic conveyors¹. Zhong et al modelled vented maize starch explosions in a silo². DESC is a new CFD method to model dust explosions with new challenges.

Dust Explosion Simulation Code, in short DESC from GeCon AS situated in Bergen, Norway, is a dust simulator based on FLACS, a gas simulator, which was originally developed by its parent company Christian Michelsen Research (CMR) in 1980s. The first version of DESC was developed in a project sponsored by the European Commission. Apart from GeCon, there were 10 institutions, companies and universities from European countries having been participated the DESC project, which involved extensive experimental work, measurements in real process plants, modelling, and validation. As a member of the project FSA did the work of turbulence measurement³-⁷.

DESC can handle not only simple geometries but also complicated geometries as well. Giving enough power to a computer, DESC can simulate a workshop and even a whole factory. Skjold, the key developer of DESC did some dust explosion simulations with his colleagues⁸-⁹.
1. Filter layout and simulation conditions

Fig. 1 shows the diagram of the filter. There are sixteen bags inside in the filter which are positioned on the upper part of it. A venting window is on one side of the filter near its top (Fig. 1 on the right side). Fig. 2 shows the filter connected with pipelines and a cyclone. Cornstarch was selected as test dust which has the following combustible characteristics:

- Dust concentration: 750 µg/m³;
- K_{50} value: 144 bar·m/s;
- Maximum explosion pressure: 7.4 bar;
- Igniter position: lower middle center

![Diagram of the filter](image)

Of course this procedure can be repeated by changing different parameters to get different results.

In this paper DSEC 1.0 run under Linux was used for simulations.

2. Simulation Results

Fig. 3 to Fig. 9 show the development of dust explosion in the filter.

![Beginning phase of ignition](image)
Fig. 4 Flame ball reached the filter wall

Fig. 5 The flame went through the vent window

Fig. 6 More flame went through the venting window

Fig. 7 The room without combustion inside getting smaller
3. Conclusion

In this paper simulation results using a CFD program DESC are presented. It should be pointed out that this is a very first approach to model dust explosion in a filter with simple tries. Further work needs to be done. As we mentioned above CDF methods to simulate explosions are good accessing tools to help us to better figure out what could happen in real industrial process. The results can indicate and demonstrate the tendency what could happen before real up-
References

